
Switching State-Feedback LPV Control with Uncertain Scheduling
Parameters

Tianyi He1, Ali Khudhair Al-Jiboory1, Sean Shan-Min Swei2, and Guoming G. Zhu1

Abstract— This paper presents a new method to design
Robust Switching State-Feedback Gain-Scheduling (RSSFGS)
controllers for Linear Parameter Varying (LPV) systems with
uncertain scheduling parameters. The domain of scheduling
parameters are divided into several overlapped subregions to
undergo hysteresis switching among a family of simultaneously
designed LPV controllers over the corresponding subregion
with the guaranteed H∞ performance. The synthesis conditions
are given in terms of Parameterized Linear Matrix Inequalities
that guarantee both stability and performance at each subregion
and associated switching surfaces. The switching stability is
ensured by descent parameter-dependent Lyapunov function
on switching surfaces. By solving the optimization problem,
RSSFGS controller can be obtained for each subregion. A
numerical example is given to illustrate the effectiveness of
the proposed approach over the non-switching controllers.

I. INTRODUCTION

The theory of Linear Parameter Varying (LPV) systems
and gain-scheduling control techniques have witnessed sig-
nificant attention from control community in the past two
decades [1], [2], [3], [4], [5]. Many researchers applied this
promising technique successfully in different engineering
applications [6], [7], [8]. Since the analysis and synthesis
problems of gain-scheduling control can be formulated as a
convex optimization problem with Linear Matrix Inequal-
ity (LMI) constraints, this approach is very attractive for
complex parameter-varying and nonlinear systems. More-
over, it offers an indisputable degree of computational and
operational simplicity since the controller can be synthesized
directly with guaranteed optimality.

However, it was found that controller design can be quite
conservative when designing LPV controller over the entire
parameter range and system performance is heavily sacrificed
to obtain a feasible solution. In certain case, no feasible
solution can be found for a given design problem. To reduce
conservativeness and improve closed-loop system perfor-
mance, references [9] and [10] present several switching
LPV controller design methods. The idea of the switch-
ing LPV control is to divide the entire parameter region
into subregions and then to design local LPV controller
for each subregion to achieve optimal/sub-optimal system
performance. The controllers are synthesized by formulating
and solving Parameterized LMIs (PLMIs) using multiple
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parameter-dependent Lyapunov functions [9] and certain
switching strategy is needed to switch among these different
LPV controllers according to current values of scheduling
parameters. Furthermore, switching stability between any
neighboring subregions is guaranteed via different switching
strategies, such as hysteresis switching [11] or average-
dwell-time switching [12]. Some applications of switching
LPV controller design in practice have been demonstrated in
[13], [14], [15].

However, the vast majority of gain scheduling design
methods assume that scheduling parameters are accurately
accessible in real-time for feedback control, i.e., scheduling
parameters are perfectly measured or estimated, which is not
realistic in practical applications. Since measurement errors
in scheduling parameters could degrade system performance
and even destabilize the closed-loop system, it is imperative
to design robust gain-scheduling controllers with robustness
against uncertainties in scheduling parameters. Although, this
interesting control problem has been studied in literature
before [16], [17], [18], to the best author’s knowledge, this
paper is the first one dealing with the measurement noises
in switching LPV control framework.

The authors addressed the robust gain-scheduling control
problem before in [8], [19]. In [8], PLMIs synthesis con-
ditions were developed to synthesize state-feedback robust
gain-scheduling controllers with the guaranteed closed-loop
performance subject to additive uncertainties in scheduling
parameters. This approach converts the controller synthesis
problem into an optimization problem of PLMIs with line
search that can be solved by efficient relaxation procedures
[20], [21] and software tools [22]. However, the approach
presented in [8] is not for the switching LPV control.
Motivated by past results of LPV control with noisy pa-
rameters and the switching techniques, it is believed that
better performance can be achieved using switching LPV
control with noisy parameters, especially for the case with
large parameter variation range. More precisely, based on
the results in [8], this paper develops new PLMI conditions
to design Robust Switching State-Feedback Gain-Scheduling
(RSSFGS) controllers, where the entire parameter region is
divided into multiple overlapped subregions and a family
of RSSFGS controllers will be designed individually for
each subregion. Hysteresis switching strategy with multi-
ple parameter-dependent Lyapunov function are adopted to
guarantee the switching stability between any neighboring
controllers.

This paper is organized as follows: a brief review of LPV
systems and problem formulation of RSSFGS control are
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given in Section II. PLMI synthesis conditions are derived in
Section III. A numerical example is presented in Section IV
to illustrate the effectiveness of proposed approach. Finally,
conclusions are given in Section V.

II. PROBLEM FORMULATION

Consider the following affined LPV system:

ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t)

z(t) =C(θ(t))x(t)+Du(θ(t))u(t)+Dw(θ(t))w(t)
(1)

where x(t) ∈ Rn denotes LPV open-loop system state; u(t)
denotes control input; w(t) is the disturbance input; and z(t)
is the controlled output. The open-loop matrices have the fol-
lowing compatible dimensions A(θ) ∈Rn×n, Bu(θ) ∈Rn×m,
Bw(θ)∈Rn×r, C(θ)∈Rp×n, Du(θ)∈Rp×m, Dw(θ)∈Rp×r.
The system matrices are assumed to be affine parameter-
dependent on scheduling parameter θ(t) such that any of
the open-loop matrix in (1) can be expressed in terms of the
scheduling parameter as,

A(θ(t)) = A0 +θ(t)A1.

Scheduling parameter θ(t) is assumed to be one-
dimensional, and it is affected by measurement noise in
real-time. Thus, θ(t) represents actual scheduling parameter,
δ (t) represents measurement noise, and θ̃(t) measured signal
such that,

θ̃(t) = θ(t)+δ (t). (2)

Scheduling parameter and measurement noise are both
assumed to be bounded as,

θ ≤ θ(t)≤ θ̄ ,

δ ≤ δ (t)≤ δ̄ ,
(3)

also, the rates of changes of these parameters are assumed
to be bounded as,

bθ ≤ θ̇(t)≤ b̄θ ,

bδ ≤ δ̇ (t)≤ b̄δ ,

Consider the interval set for the measured scheduling
parameter,

Θ := {θ̃(t) ∈ R : θ̃ ≤ θ̃(t)≤ θ̃}.
The scheduling parameter set Θ is divided into finite num-

bers of subsets by a family of switching surfaces. Adjacent
subsets are overlapped by each other to undergo hysteresis
switching of controllers when scheduling parameters vary
across switching surface.

In order to guarantee the stability in the switching region,
the size of overlapped subset should be larger than that
of parameter uncertainty, otherwise, parameter uncertainty
cannot be able to be robustly handled by adjacent switched
LPV controllers. Each subregion and overlapped subset of
scheduling parameter are defined as follows,

Θ
( j) := {θ̃(t) ∈ R : θ̃

( j) ≤ θ̃(t)≤ θ̃
( j)
}, j ∈ NJ ,

Θ
( j, j+1) := {θ̃(t) ∈ R : θ̃

( j)
≤ θ̃(t)≤ θ̃

( j+1)}, j ∈ NJ−1.

Θ(1)
Θ(2)

Θ(3)

Θ(1,2)
Θ(2,3)

S(2,1) S(1,2) S(3,2) S(2,3)
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δ ∈ [δ, δ̄]

Fig. 1. Illustration of dividing parameter range into multiple subregions
with overlap.

where NJ := {1, · · · ,J}.

Fig. 1 illustrates the case of 3 subregions with 2 overlapped
subsets. Switching surface notation S(i, j) indicates that jth lo-
cal LPV controller is activated after ith local LPV controller.
In other words, this means the scheduling parameter moves
from subregion Θ(i) into subregion Θ( j).

The objective is to design a family of RSSFGS controllers
K(θ̃) := {K1(θ̃),K2(θ̃), · · · ,KJ(θ̃)} of the form,

u(t) = K(θ̃)x(t), K ∈K (4)

for each i–th subregion of scheduling parameters that ro-
bustly stabilize the closed-loop system in the presence of
noisy scheduling parameters, while minimizing H∞ norm
from disturbance w(t) to the controlled output z(t).

Note that, as the number of subregions increases, less
conservative controller can be obtained for each subregion,
which leads to improved closed-loop performance. Each
controller is designed for the given subregion with the best
achievable performance, and the closed-loop system stability
is guaranteed over switching surfaces.

The closed-loop system can be obtained by substituting
state feedback equation into open-loop system,

ẋ(t) = Acl(θ(t), θ̃(t))x(t)+Bw(θ(t))w(t),

z(t) =Ccl(θ(t), θ̃(t))x(t)+Dw(θ(t))w(t),
(5)

where
Acl(θ(t), θ̃(t)) = A(θ(t))+Bu(θ(t))K(θ̃(t)),

Ccl(θ(t), θ̃(t)) =C(θ(t))+Du(θ(t))K(θ̃(t))

III. MODELING VARYING PARAMETER
A. Affine To Multi-simplex Conversion

Following the procedure presented in [23], [21], the orig-
inal parameter space needs to be converted into a convex
multi-simplex domain. Mult-simplex domain can be defined
as the Cartesian product of multiple unit-simplexes. Thus,
the actual scheduling parameter θ(t) and the associated
uncertainty δ (t) can be both converted into unit-simplex
variable α̃(t) as [8],

α̌1 =
θ(t)+ θ̄

2θ̄
, α̌2 = 1− α̌1 =

θ̄ −θ(t)
2θ̄

. (6)

α̂1 =
δ (t)+ δ̄

2δ̄
, α̂2 = 1− α̂1 =

δ̄ −δ (t)
2δ̄

, (7)



thus, we have α̌ = (α̌1, α̌2) ∈ Λ2, α̂ = (α̂1, α̂2) ∈ Λ2. Unit-
simplex Λ2 is defined as:

Λ2 := {α ∈ R2 :
2

∑
i=1

αi = 1,αi ≥ 0, i = 1,2}

Therefore, multi-simplex variable α̃ = (α̌, α̂) ∈Λ = Λ2×
Λ2 can be generated.

Remark 1: All the open-loop system matrices in (1) and
controller variables need to be converted into multi-simplex
domain using the procedure described above. Note that
the open-loop system matrices depend only on the actual
scheduling parameters θ(t). However, the same procedure
should be followed to convert them into multi-simplex
parameters with the exception that δ̄ = 0 is substituted
in (7). In this case, to distinguish matrices depending on
the measured scheduling parameters from system matrices
depending on the actual scheduling parameters we denote
α(t) for the multi-simplex variables when δ̄i = 0. Thus, the
system matrices can be written in terms of multi-simplex
parameters as, A(α), Bw(α), Bu(α), C(α) , Dw(α), and
Du(α).

Similarly, varying rate of scheduling parameter and uncer-
tainty can be converted into multiplex variable as:

bθ

2θ̄
≤ ˙̌α1,2 ≤

b̄θ

2θ̄
,

bδ

2δ̄
≤ ˙̂α1,2 ≤

b̄δ

2δ̄

then,

Ωi := {φ ∈ R2 : φ =
2

∑
k=1

ηikHk
i ,ηi ∈Λ2, i = 1,2}

Therefore, ˙̃α ∈Ω=Ω1×Ω2. Note that multisimplex Λ i×Ωi

is used to represent the multisimplex Λ ×Ω for i = 1,2, ...,J
when θ is restricted to Θ(i).

A systematic approach and detailed conversion can be
found in [8], [23]. The control problem can be expressed
in terms of multiplex variables:

Problem 1: Suppose that the scheduling parameter θ(t)
is provided as θ̃(t) which is affected by uncertainty δ (t)
(see (2)). For given scalar γ , find a family of state-feedback
switching LPV controllers K j(θ̃(t)), which stabilizes the
closed-loop system (5), and for all parameter pair (α̃, ˙̃α) ∈
Λ ×Ω, satisfies:

sup
α̃, ˙̃α

sup
w∈L2,w6=0

||z||2
||w||2

< γ (8)

B. Hysteresis Switching by multiple parameter-dependent
Lyapunov functions

Before presenting the synthesis conditions, multiple
parameter-dependent Lyapunov function for switching con-
trol should be introduced. For each subregion, there is
a continuously differentiable parameter-dependent matrix
Pi(α) = Pi(α)′ > 0 associated with the ith subregion. More
precisely, the Lyapunov matrix {Pi(α)}i∈NJ is assumed when
the ith controller is active, then the Lyapunov function can
be expressed as,

Vi(xcl ,α) = xT
clPi(α)xcl (9)

where, xcl is the closed-loop system state. On the switching
surfaces, the condition below should be satisfied,

Pi(α)≥ Pj(α) (10)

indicating that Lyapunov function of the closed-loop system
is non-increasing when switching from Θ(i) to Θ( j) that
implies

Vi(xcl ,α)≥Vj(xcl ,α). (11)

Then, switching from the ith controller to the jth controller
is safe.

C. Gain-Scheduling Controller Synthesis

Theorem 1: Given a scalar γ , if there exist contentiously
differentiable matrices 0 < Pi(α) = Pi(α)

′ ∈ Rn×n, Zi(α̃) ∈
Rm×n, Gi(α̃)∈Rn×n, and a scalar εi > 0 for (α̃, ˙̃α)∈Λ i×Ωi

for i = 1,2, ...,J, such that the following PLMIs are satisfied
for i = 1,2, ...,J:

Φi,1(α̃, ˙̃α) ∗ ∗ ∗
Φi,2(α, α̃) −εi(Gi(α̃)+Gi(α̃)

′
) ∗ ∗

Φi,3(α, α̃) Φi,4(α, α̃) −Ip ∗
Bw(α)

′
0r×n Dw(α)

′ −γ2Ir

< 0

(12)

Pi(α)≥ Pj(α), i f α ∈ S(i, j),

Pi(α)≤ Pj(α), i f α ∈ S( j,i),
(13)

where,

Φi,1(α̃, ˙̃α) =A(α)Gi(α̃)+Bu(α)Zi(α̃)+
∂Pi(α)

∂α
α̇

+(A(α)Gi(α̃)+Bu(α)Zi(α̃))
′

Φi,2(α, α̃) =Pi(α)−Gi(α̃)+ εi(A(α)Gi(α̃)+Bu(α)Zi(α̃))
′

Φi,3(α, α̃) =C(α)Gi(α̃)+Du(α)Zi(α̃)

Φi,4(α, α̃) =εiC(α)Gi(α̃)+ εiDu(α)Zi(α̃)
(14)

the gain-scheduling controller with the hysteresis switching
logic

Ki(α̃) = Zi(α̃)Gi(α̃)−1, i = 1,2, ...,J (15)

stabilizes the closed-loop system with the guaranteed H∞

performance bound γ for any pair (α̌, α̂) ∈Λ2×Λ2,( ˙̌α, ˙̂α) ∈
Ω1×Ω2.
Proo f :

This proof can be shown in two portions, stability and ro-
bustness on each overlapped subset and stability on switching
surfaces.

Inequality (12) can be obtained from Bounded Real
Lemma (BRL) of LPV systems with slack variable approach.
This inequality implies that the designed controller can
stabilize the closed-loop system against scheduling param-
eter uncertainty in each subset. The detailed proof of this
inequality can be found in [8].

On the other hand, inequality (13) guarantees the stabil-
ity on switching surface by descent Lyapunov matrix on
switching surfaces. More precisely, the first inequality in (13)
guarantees switching stability when the varying parameter



θ̃(t) (equivalently α̃) moves from Θ(i) to Θ( j), while the
second inequality in (13) guarantees switching stability when
the varying parameter moves back from Θ( j) to Θ(i).

Based on Theorem 1, the RSSFGS controller design
problem is an optimization problem with PLMI constraints
and it can be solved by iteratively solving two convex opti-
mization problems with LMI constraints. More specifically,
the optimization problem is

min
ε,P(α),Z(α̃),G(α̃)

γ (16)

subject to inequalities (12) and (13).
In practice, the controller is synthesized by optimizing

performance for a fixed scalar ε in terms of time-varying
parameters inside specific multi-simplex domain. The value
of fixed scalar ε is chosen by trial and error. However, since
the conditions of Theorem 1 are formulated in terms of
PLMIs, the optimization problem is of infinite dimensional
constraints. Therefore, certain relaxation procedure needs to
be applied to convert it into finite dimensional LMIs at the
vertices of the multi-simplex domain. In this paper, ROLMIP
[22] has been used to perform such manipulations which
works jointly with YALMIP [24] and SeDuMi [25].

IV. NUMERICAL EXAMPLE

Consider this one-dimensional scheduling parameter LPV
system [17], [8]:

A(θ(t)) =
[

25.9−60θ(t) 1
20−40θ(t) 34−64θ(t)

]
,

Bu =

[
3
2

]
,Bw =

[
−0.03
−0.47

]
,

C =

[
1 1
0 0

]
,

Du =

[
0
1

]
,Dw =

[
0
0

]
.

The scheduling parameter and its varying rate are bounded
as 0 ≤ θ ≤ 1, |θ̇(t)| ≤ 1, and measurement noise used in
simulations is defined as

δ (t) = ζ ∗ sin(100∗ t), (17)

implying that uncertainty and its rate of change are also
bounded by |δ (t)|< ζ and |δ̇ (t)| ≤ 100∗ζ with ζ = 0.05.

For comparison purposes, three different LPV control
strategies have been designed for this example. The first one
is non-switching LPV controller (J = 1). The other two are
switching LPV controllers with two (J = 2) and three (J = 3)
subregions, respectively.

More precisely, the non-switching controller is designed
to stabilize the system and handle measurement noise of
scheduling parameter over the entire range of the parameter
space. The range of scheduling parameter variations for this
controller is defined as

Θ := {θ(t)|θ(t) ∈ [0,1]},

TABLE I
COMPARISON OF SYSTEM PERFORMANCES OF 3 CASES.

Case γ1 γ2 γ3

non-switching 0.7777 − −
Two subregions switching 0.6980 0.6857 −

Three subregions switching 0.6673 0.6582 0.4894

For the two-subregion switching case, the parameter set
is artificially divided into two overlapped subsets, and two
local LPV controllers are designed. Thus, the scheduling
parameter range is divided as

Θ
(1)
2sub := {θ(t)|θ(t) ∈ [0,0.6]},

Θ
(2)
2sub := {θ(t)|θ(t) ∈ [0.4,1]}.

Similarly, for three-subregion switching case, the scheduling
parameter set is divided as

Θ
(1)
3sub := {θ(t)|θ(t) ∈ [0,0.4]},

Θ
(2)
3sub := {θ(t)|θ(t) ∈ [0.3,0.8]}.

Θ
(3)
3sub := {θ(t)|θ(t) ∈ [0.7,1]}.

Obviously, the size of adjacently overlapped subset
Θ j
⋂

Θ j+1 is larger than that of uncertainty bound, providing
enough space for controller to achieve robustness against
measurement uncertainty.

Theorem 1 is used to synthesize a family of switching LPV
controllers for the overall parameter region. The selection of
εi is via trial and error, and 0.035 for ε1, 0.01 for all other ε

is chosen to produce a good performance for all three cases.
The system performance of the three designs are compared

in Table I. It is clear that as the number of subregions
increases, the upper bound of the system performance γ

decreases. Furthermore, decreasing trend of the performance
bound γ illustrates that reducing the size of subregions
decreases the LPV control synthesis conservativeness and
thus leads to improved system performance over the overall
parameter region.

Let’s assume actual scheduling parameter as linear func-
tion of time t in the three subregions, while it is disturbed
by sinusoidal noise defined in (17), as shown in Fig. 2.

Additionally, the initial conditions of both LPV plant states
are set to x1(0) = 1 and x2(0) = −1, respectively and the
disturbance input w(t) is set as a unit pulse with a duration
of four seconds. That is, w(t) = 2 if t ∈ [0.5,6] and w(t)
is zero elsewhere. The LPV plant states are regulated by
the designed three LPV controllers (non-switching, switching
with two subregions and switching with three subregions).

Fig. 3 and Fig. 4 show the trajectories of system states
x1(t) and x2(t) for the non-switching case, two subregions
and three subregions switching cases, respectively. Solid
curves denote trajectory of states x1(t) or x2(t). Meanwhile,
blue color represents non-switching case, red color repre-
sents two-subregion case, and black color represents three-
subregion case. Black and red dashed lines are switching sig-
nal for two-subregion and three-subregion switching cases,



0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

Time/(second)

θ(
t)

,
θ̃(
t)

Actual scheduling parameter
Measured scheduling parameter

1

Fig. 2. Trajectory of actual scheduling parameter and measured scheduling
parameter.

respectively. Note that, to show switching signal clearly in
one figure, signals of two different magnitudes are used to
represent the active status of controllers for regions 1 and
2 for the two-subregion case; and signals of 3 magnitudes
of indicate the activate status of controllers for regions 1, 2,
and 3 for the three-subregion case.

In Figs. 3 and 4, it is easy to observe that when ex-
ternal disturbance w(t) is not applied onto system during
t ∈ [0,0.5] second, the system states are rapidly regulated
to zeros. After external disturbance w(t) is applied to the
system from t = 0.5 second, system states are simulated and
increases to around 0.3, however, all three controllers (non-
switching LPV, two-subregion and three-subregion RSSFGS
controllers) are able to stabilize the closed-loop LPV sys-
tem. Due to the periodic scheduling parameter uncertainty,
controller gains of LPV controllers subsequently fluctuate
when disturbance is activated. However, as the number of
subregions for the scheduling parameter is increased, the
rates of the convergence for both system states become faster,
leading to the improved closed-loop system performance.
This can also be confirmed by Table I. After external
disturbance disappears at 6th second, both system states
converge to zero state rapidly. On the moment of switching,
i.e. when scheduling parameter is on switching surface, state
trajectory goes through smaller overshoot for two-subregion
switching case and 3 sub-regions switching case. While, in
non-switching case, states x1(t) and x2(t) goes through a
large overshoot with the magnitude of 3.0 (outside of the
plot in Fig. 3) and 0.8 (Fig. 4). The comparison among three
cases clearly demonstrates the advantage of switching LPV
controllers in the perspective of system performance.

In Fig. 5, the control signal is plotted for the three different
cases. It is clear that the control magnitude is finite but
oscillations occur at the switching point (especially near the
first second) for the three-subregion case. This is caused by
the rapid controller switching on the switching surface and
can be solved by adding smooth switching constraints on
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Fig. 3. Response of x1(t) for the three different cases of the control design,
where blue, red, and solid lines are for J = 1,2, and 3; and the red and black
dashed lines are for the switching signals (multiplied by 0.05) associated
with J = 2 and 3.

0 1 2 3 4 5 6 7 8 9 10
Time/second

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
ag

ni
tu

de
state x

2
 trajectory

non-switching case
2-subregions switching case
2-subregions switching signal
3-subregions switching case
3-subregions switching signal

Fig. 4. Response of x2(t) for the three different cases of the control desig,
where blue, red, and solid lines are for J = 1,2, and 3; and the red and black
dashed lines are for the switching signals (multiplied by 0.05) associated
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PLMIs. This will be the topic for future work.

V. CONCLUSIONS

A robust-switching state-feedback (linear parameter-
varying) LPV control synthesis method is proposed for
LPV systems with noisy scheduling parameters. The over-
all scheduling parameter set is divided into several over-
lapped subregions. The set of guaranteed performance state-
feedback LPV controllers can be designed using the proposed
scheme, where hysteresis switching strategy is adopted to
robustly switch between adjacent local LPV controllers.
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Parameterized linear matrix inequalities (PLMIs) are formu-
lated based on stability conditions for each subregion and
switching stability over each switching surface is guaranteed
by multiple parameter-dependent Lyapunov functions. The
switching LPV controller is synthesized by solving the
feasible solution problem formulated by the derived PLMIs.

A numerical example is given to demonstrate effectiveness
of the designed switching LPV controllers. Comparing with
non-switching LPV controller, the two-region and three-
region switching LPV controllers reduce the conservative-
ness of the designed controllers. The future work includes
improving the switching smoothness and applying the pro-
posed approach to practical control applications.
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